TM1 – Resultierende im allgemeinen Kräftesystem

Inhaltsverzeichnis

In dieser Lerneinheit zeigen wir dir, wie du die Resultierende bestimmen kannst. Dabei betrachten wir Kräfte in einem allgemeinen Kräftesystem.

Wir zeigen dir ganz ausführlich wie du Kräfte zu einer einzigen Kraft, der sogenannten Resultierenden, zusammenfassen kannst. Dabei betrachten wir das allgemeine Kräftesystem, in welchem sich die gegebenen Kräfte nicht alle in einem einzigen Punkt schneiden.

 

Hubbrücke, Resultierende bestimmen, allgemeines Kräftesystem

 

Die Resultierende ist die Zusammenfassung von Einzelkräfte zu einer einzigen Kraft. Diese Kraft weist genau dieselbe Wirkung auf den Körper auf, wie die Einzelkräfte zusammen. 

 

Schauen wir uns mal an, wie wir vorgehen müssen und welche Gleichungen wir benötigen, wenn wir die Resultierende bestimmen sollen. Danach folgt ein ausführliches Beispiel zur Berechnung der Resultierenden. 

 


Vorgehensweise: Resultierende bestimmen (allgemeines Kräftesystem)


Wenn wir für Kräfte in einem allgemeinen Kräftesystem die Resultierende bestimmen sollen, dann wollen wir den Betrag, die Richtung und die Lage der Resultierenden bestimmen. Dazu kannst du dir die folgenden Schritte merken:

undefiniert
Vorgehensweise: Resultierende bestimmen

 

1.Durchführung der Kräftezerlegung für alle Kräfte die in der Ebene wirken (alle Kräfte mit Winkel).

2. Ersetzen der Kräfte mit Winkel durch ihre Kraftkomponenten aus 1. 

3. Berechnung der Teilresultierenden Rx und Ry.

4. Berechnung des Betrags der Resultierenden aus den Teilresultierenden Rx und Ry.

5. Bestimmung der Richtung der Resultierenden (z.B. Winkel zur Waagerechten) aus den Teilresultierenden Rx und Ry.

6. Berechnung der Summe aller Momente der Einzelkräfte auf einen festgelegten Bezugspunkt.

7. Berechnung der Lage der Resultierenden.

 

Wenn du die obigen Schritte durchführst, dann erhältst du am Ende den Betrag, die Richtung und die Lage der Resultierenden. Schauen wir uns mal die Gleichungen an, die du benötigst, um die Resultierenden bestimmen zu können.

 


Gleichungen: Resultierende bestimmen


Kräftezerlegung

Resultierende bestimmen, Kräftezerlegung
Resultierende bestimmen

Die Kräftezerlegung musst du dann durchführen, wenn Kräfte in der Ebene wirken. Diese Kräfte weisen einen Kraftanteil in x- und in y-Richtung auf. Für die Berechnung der Teilresultierenden müssen wir diese Kraftanteile kennen. So geht der Kraftanteil in x-Richtung in die Bestimmung der Teilresultierenden Rx ein und der Kraftanteil in y-Richtung in die Bestimmung der Resultierenden Ry.

 

 \boxed{F_x = F \cdot cos(\alpha)}

 

 \boxed{F_y = F \cdot sin(\alpha)}

 

Merk's dir!
Merk's dir!

Damit die obigen Gleichungen gelten, muss der Winkel zur Waagerechten (zur x-Achse) gegeben sein. Hierbei ist F die Kraft die zerlegt werden soll und α der Winkel zur Waagerechten.

 

Berechnung der Teilresultierenden Rx und Ry

Wir können im nächsten Schritt die Teilresultierenden Rx und Ry berechnen. Rx ist die Zusammenfassung aller Kräfte die in x-Richtung wirken, Ry die Zusammenfassung aller Kräfte die in y-Richtung wirken.

 

 \boxed{R_x = \sum F_{ix}}         Summe aller Kräfte in x-Richtung

 

 \boxed{R_y = \sum F_{iy}}          Summe aller Kräfte in y-Richtung

 

Bei der späteren Berechnung der Teilresultierenden ist es wichtig, dass du auf die Vorzeichen achtest. So werden Kräfte die in positive Achsenrichtung wirken addiert und Kräfte die negative Achsenrichtung wirken subtrahiert.

 

Betrag der Resultierenden

Die beiden Teilresultierenden liegen auf den Achsen und sind damit rechtwinklig zueinander. Zwei rechtwinklige Kräfte können zu einer Kraft mittels Satz des Pyhtagoras zusammengefasst werden. Um den Betrag der Resultierenden bestimmen zu können, kannst du also Satz des Pythagoras anwenden:

 

 \boxed{R = \sqrt{R_x^2 + R_y^2}}

 

Richtung der Resultierenden

Die Richtung der Resultierenden wird bestimmt, indem der Winkel zur Waagerechten oder zur Senkrechten angegeben wird. Wenn wir den Winkel aus den beiden Teilresultierenden bestimmen, dann können wir den Tanges anwenden:

 

 \boxed{\tan(\alpha) = \dfrac{R_y}{R_x}}          Winkel von Rx zu R

 
Hierbei handelt es sich um den Winkel von Rx zu R. Mit der obigen Gleichung wird also der Winkel von der Waagrechten zur Resultierenden berechnet. Sollst du den Winkel zur Senkrechten angeben, so musst du einfach 90° – α rechnen.
 

Bestimmung des resultierenden Moments

Wir müssen das resultierende Moment MR ermitteln, um im letzten Schritt die Lage der Resultierenden bestimmen zu können. Das resultierende Moment MR ist nichts anderes als die Summe aller Moment der Einzelkräfte auf einen festgelegten Bezugspunkt X:

 

 \boxed{M_R^X = \sum M_i^X}

 

Das resultierende Moment ist demnach auch das Moment, welches die Resultierende auf den Bezugspunkt X ausübt.

 

Bestimmung der Lage der Resultierenden

Betrachten wir die Resultierende, dann übt diese ein Moment auf einen bestimmten Bezugspunkt aus. Dieses Moment kann auch mit der folgenden Gleichung berechnet werden:

 

 \boxed{M_R^X = R \cdot h}

 

Hierbei ist MR das Moment welches die Resultierende ausübt, X der festgelegte Bezugspunkt auf welchen das Moment ausgeübt wird, R die Resultierende und h der Hebelarm, also der senkrechte Abstand von der Resultierenden zum Bezugspunkt X.

 

Wir suchen hier die Lage der Resultierenden. Diese können wir mittels Hebelarm angeben. Wir stellen also die obige Gleichung nach h um:

 

 \boxed{h = \dfrac{M_R}{R}}

 

Wir geben damit die Lage der Resultierenden mit dem senkrechten Abstand vom gewählten Bezugspunkt X zur Resultierenden an.

 

Videoreihe: Resultierende im allgemeinen Kräftesystem

In dieser Videoreihe zeigen wir dir ausführlich, wie du die Resultierende im allgemeinen Kräftesystem bestimmst:

Lernclip
Resultierende bestimmen
YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

 

Beispiel Resultierende bestimmen


Aufgabenstellung
Resultierende bestimmen, Beispiel Resultierende bestimmen
Resultierende bestimmen

 

Gegeben sei eine Hubbrücke für Fußgänger, die einen kleinen Kanal überspannt. Die Brücke wird durch ein Seil mit einer Zugkraft von Fs = 60 kN gehalten. Die Zugkraft greift in einem Winkel von α=58° an. Außerdem wirken zwei parallele Kräfte F1 = 80 kN und F2 = 40 kN auf die Hubbrücke. Die Kräfte weisen die folgenden Abständen zueinander auf:

l1=4m, l2=2m und l3=1m

Bestimme
a) den Betrag der Resultierenden R,
b) den Winkel αR der Resultierenden (zur Horizontalen) sowie
c) den senkrechten Abstand der Resultierenden zum Lager B.

 

Lösung

Lösung a)

Bevor wir mit der Berechnung des Betrags der Resultierenden beginnen können, müssen wir zunächst Kräfte mit einem Winkel in ihre Komponenten zerlegen. Im obigen Beispiel müssen wir zunächst die Seilkraft FS in ihre x- und y-Komponente zerlegen:

 

Beispiel, Resultierende im allgemeinen Kräftesystem
Resultierende bestimmen

 

Die Berechnung der Kraftanteile erfolgt zu:

 

F_{sx} = F_s \cdot \cos(\alpha) = 60 kN \cdot \cos(58^\circ) = 31,8 N

 

F_{sy} = F_s \cdot \sin(\alpha) = 60 kN \cdot \sin(58^\circ) = 50,9 N

 

Wir können als nächstes die Teilresultierenden Rx und Ry bestimmen. 

 

Teilresultierende Rx

 

R_x = \sum F_{ix} = + F_{sx}

 

R_x = +31,8 kN

 

Wir haben hier nur eine Kraft in x-Richtung gegeben und zwar den Kraftanteil Fsx der Kraft Fs. Diese Kraft zeigt in positive x-Richtung, damit ist die Teilresultierende Rx positiv und zeigt damit in positive x-Richtung.

 

Teilresultierende Ry

 

R_y = \sum F_{iy} = -F_1 + F_{sy} - F_2

 

R_y = -80 kN + 50,9 kN - 40 kN = -69,1 kN

 

Die Kraft F1 zeigt in negative y-Richtung, wird deswegen negativ berücksichtigt, genau wie die Kraft F2. Der Kraftanteil Fsy zeigt in positive y-Richtung, wird also positiv berücksichtigt. Die Teilresultierende Ry ist negativ und zeigt damit in negative y-Richtung.

 

Teilresultierende, Resultierende
Resultierende bestimmen







Resultierende bestimmen

Wir können als nächstes aus den beiden Teilresultierenden die Resultierende bestimmen. Diese liegt irgendwo im 4. Quadranten des obigen Koordinatensystems. Wir können die Richtung der Resultierenden also schon grob abschätzen.

Den Betrag der Resultierenden können wir mittels Satz des Pythagoras berechnen:

 

R = \sqrt{R_x^2 + R_y^2} = \sqrt{(31,8 kN)^2 + (-69,1 kN)^2} = 76,1 kN

 

Die Resultierende weist einen Betrag von 76,1 kN auf.

 

Lösung b)

In der Lösung b wollen wir die Richtung der Resultierenden bestimmen bzw. den Winkel zur Senkrechten. Zunächst berechnen wir den Winkel zur Waagerechten:

 

\tan(\alpha_R) = \dfrac{R_y}{R_x}          Winkel von Rx zu R

 

Hierbei handelt es sich um den Winkel von der Teilresultierenden Rx zur Resultierenden R. Da Rx auf der x-Achse liegt, handelt sich also um den Winkel von der Waagerechten zur Resultierenden.

 

Wir lösen die obige Gleichung nach dem Winkel αR auf:

 

\alpha_R = tan^{-1}(\dfrac{R_y}{R_x})

 

Einsetzen der Werte:

 

\alpha_R = tan^{-1}(\dfrac{-69,1 kN}{31,8 kN}) = -65,29^{\circ}

 

Der Winkel von der Rx zur Resultierenden beträgt 65,29°. Das Minuszeichen bedeutet, dass die Winkelabtragung von Rx zu R in einer Rechtsdrehung erfolgen muss (negativer Drehsinn). Das ist aber auch aus der Grafik erkennbar, so dass du das Vorzeichen gar nicht weiter beachten musst. Denn aus der obigen Grafik wissen wir, dass die Resultierende im 4. Quadranten liegen muss und wissen demnach auch, wie der Winkel abzutragen ist.

 

Wir suchen nun aber den Winkel zur Senkrechten:

 

90^{\circ} - 65,29^{\circ} = 27,71^\circ

 

Richtung der Resultierenden
Resultierende bestimmen

 

Lösung c)

resultierendes Moment, resultierende
Resultierende bestimmen

In der letzten Aufgabenstellung wollen wir die Lage der Resultierenden in Bezug auf das Lager B bestimmen. Zunächst müssen wir dazu aber das resultierende Moment aus der Summe der Einzelmomente bestimmen. Da wir den Abstand zum Lager B suchen, legen wir hier unseren Bezugspunkt für die Bestimmung der Moment hin:

 

M_R^B = \sum M_i^{B} = F_1 \cdot (l_1 + l_2 + l_3) - F_{sy} \cdot (l_2 + l_3) + F_2 \cdot l_3

 

Einsetzen der Werte:

 

M_R^B = 80 kN \cdot 7m -  50,9 N \cdot 3m + 40 kN \cdot 1m = 447,3 kNm

 

Das resultierende Moment beträgt demnach 447,3 Nm. Um den Abstand vom Bezugspunkt (Lager B) zur Resultierenden bestimmen zu können, können wir den Hebelarm berechnen:

 

h = \dfrac{M_R}{R} = \dfrac{447,3 kNm}{76,1 kN} = 5,88 m

 

Der senkrechte Abstand vom gewählten Bezugspunkt zur Resultierenden beträgt 5,88m. Da der Bezugspunkt im Lager B liegt, ist dies auch gleichzeitig der senkrechte Abstand vom Lager B zum Bezugspunkt.

hebelarm, resultierende bestimmen
Resultierende bestimmen

 

Die Resultierende mit der Größe von 76,1 kN, dem Winkel von 24,71° zur Senkrechten sowie dem senkrechten Abstand von 5,88m vom Lager B ausgehend weist dieselbe Wirkung auf den Balken auf, wie die 3 Einzelkräfte zusammen.

 

 

wie gehts weiter

Wie geht's weiter?

Nachdem du nun weißt, wie du die Resultierende bestimmen kannst, wollen wir uns in der folgenden Lerneinheit mal die Gleichgewichtsbedingungen anschauen.

 

Trainingsbereich

Übrigens….. Als “Mitglied unserer Technikermathe-Community” findest du unter jedem Kurstext zusätzlich einen Trainingsbereich mit vielen interaktiven Übungsaufgaben zur Wissensvertiefung, sowie eine umfangreiche Formelsammlung und Probeklausur am Ende eines jeden Kurses.

Mehr für dich!
Hat dir dieses Thema gefallen?Ja? – Dann schaue dir auch gleich die anderen Themen zum Kurs TM1 und PH2 an: https://technikermathe.de/courses/tm1-statik
sowie: https://technikermathe.de/courses/ph2-grundlagen-der-statik

Kennst du eigentlich schon unseren YouTube-Channel? – Nein? – Dann schau super gerne vorbei: https://www.youtube.com/channel/UCCsPZX5is8mRcoZG8uAS_ZQ

 Immer auf dem neuesten Stand sein? – Ja? – Dann besuche uns doch auch auf Instagram: https://www.instagram.com/technikmachts/

Dein Technikermathe.de-Team

Uns gibts auch auf YouTube!

Undzwar mit aktuell über 400 Lernvideos und allen Aufzeichnungen von unseren Webinaren!

Lass uns ein Abo da!

Wenn dir unsere Videos gefallen! Damit hilfst du uns echt mega und es kostet dich keinen Cent!
Zum YouTube Kanal

Schon gewusst?

Aktuell bieten wir über 2500 Lerntexte in über 20 Kursen zu den verschiedensten Themen an! Als Technikermathe.de Mitglied hast du vollen Zugriff auf alle Lerninhalte!
0
    0
    Dein Warenkorb
    Dein Einkaufswagen ist leer.Zurück zum Shop

    TECHNIKERMATHE MITGLIEDSCHAFT 50% REDUZIERT!