Mehr zu diesem Thema und der Physik findest du im Kurs: PH4-Kinetik
Impulserhaltungssatz – Grundlagen
Impulserhaltungssatz – Beispiele im Alltag
Hier sind einige Beispiele für den Impulserhaltungssatz im Alltag:
-
Billardspiel: Beim Stoßen eines Billardballs gegen einen anderen Ball beobachten wir, dass der Gesamtimpuls des Systems aus beiden Bällen vor und nach der Kollision konstant bleibt. Der Impuls wird zwischen den Bällen übertragen, sodass der Gesamtimpuls erhalten bleibt.
-
Raketenstart: Beim Start einer Rakete wird Treibstoff mit großer Geschwindigkeit nach unten ausgestoßen. Gemäß dem Impulserhaltungssatz bewirkt die nach unten gerichtete Ausstoßgeschwindigkeit des Treibstoffs eine nach oben gerichtete Beschleunigung der Rakete.
-
Ballfangtrick: Bei einem Trick, bei dem eine Person einen Ball fängt, während sie auf einem drehbaren Stuhl sitzt und diesen in entgegengesetzter Richtung dreht, kann der Impulserhaltungssatz beobachtet werden. Wenn die Person den Ball fängt, dreht sich der Stuhl in die entgegengesetzte Richtung, um den Impuls auszugleichen.
-
Skaten: Beim Skaten oder Rollschuhfahren auf einer ebenen Oberfläche bewirkt das Abstoßen mit den Beinen nach hinten eine nach vorne gerichtete Beschleunigung. Der Impulserhaltungssatz besagt, dass der Impuls, der auf die Beine ausgeübt wird, gleich und entgegengesetzt zum Impuls ist, den der Körper in die entgegengesetzte Richtung erhält.
-
Rückstoß von Schusswaffen: Beim Abfeuern einer Schusswaffe wird ein Projektil mit hoher Geschwindigkeit nach vorne geschossen. Gemäß dem Impulserhaltungssatz erfährt die Waffe einen Rückstoß in entgegengesetzter Richtung.
Diese Beispiele zeigen Situationen im Alltag, in denen der Impulserhaltungssatz beobachtet werden kann. Der Impulserhaltungssatz ist ein fundamentales Konzept in der Physik und ermöglicht die Untersuchung von Bewegungen und Kollisionen in verschiedenen Systemen.
Impulserhaltungssatz – Formel
Betrachten wir zwei Körper, die aufeinander einwirken, bleibt der Gesamtimpuls beider Körper (Summe der Impulse beider Körper) konstant. Der Impuls jedes einzelnen Körpers kann sich dabei ändern, die Summe der Einzelimpulse hingegen ist konstant.
mit:
folgt
Dabei ist p1 der Impuls des Körpers 1 und p2 der Impuls des Körpers 2.
Eindimensionaler Stoß zweier Körper
Betrachten wir mal ein Beispiel, um den Impulserhaltungssatz zu verstehen. Nehmen wir einmal an, zwei Körper bewegen sich eindimensional (auf einer Linie) mit einer konstanten Geschwindigkeit aufeinander zu. Wir betrachten der Einfachheit halber zwei Massenpunkte. Der Massenpunkt 1 weist eine Geschwindigkeit v1 auf, der Massenpunkt 2 eine Geschwindigkeit v2. Beide Massenpunkte prallen zusammen und stoßen sich dann voneinander ab, so dass die beiden Massenpunkte sich nach dem Zusammenstoß in entgegengesetzter Richtung mit den Geschwindigkeiten u1 und u2 weiter bewegen.

In der obigen Grafik ist das Beispiel aufgezeigt. Wir haben hier einmal die Geschwindigkeiten v1 und v2 vor dem Aufprall gegeben und außerdem die Geschwindigkeiten u1 und u2 nach dem Aufprall. Der Impulserhaltungssatz ergibt sich in diesem Fall wie folgt:
Die Summe der beiden Impulse vor dem Stoß ist gleich der Summe der beiden Impulse nach dem Stoß.
Dazu stellen wir uns einen Stoß zweier Körper vor. Wir können uns das ganze am Beispiel Billard vorstellen. Das Spiel nutzt den Impuls einer Kugel, um diesen auf eine andere Kugel zu übertragen. Der Gesamtimpuls beider Kugeln ist vor und nach dem Zusammenstoß gleich groß (wenn wir die Reibung zwischen Kugel und Billardtisch vernachlässigen). Allerdings haben sich die Einzelimpulse der beiden Kugeln verändert. Trifft die angestoßene Kugel auf eine andere Kugel, dann gibt diese einen Teil ihres Impulses an die andere Kugel ab. Die Summe der beiden Impulse entspricht aber der Summe der Impulse vor dem Stoß.
Auch hier gehen wir wieder davon aus, dass sämtliche Reibungskräfte vernachlässigt werden.
Videoclips: Impulserhaltungssatz
Schauen wir uns mal die folgenden Videos zum Impulserhaltungssatz an.
📺 Videoclip 1: Impulserhaltungssatz – Erklärung
📺 Videoclip 2: Impulserhaltungssatz – Beispielaufgabe
Schauen wir uns zum Impulserhaltungssatz mal einige Beispiele an.
Beispiele zum Impulserhaltungssatz
Wir betrachten als nächstes einige Beispiele zum Impulserhaltungssatz. Versuche zunächst die Aufgaben selbstständig zu lösen, bevor die die Lösungen zur Hilfe nimmst.
Beispiel 1 : Kugel und Kiste
Impuls vor dem Zusammenstoß
Wir müssen in diesem Beispiel den Impulserhaltungssatz anwenden. Wir schauen uns zunächst die beiden Einzelimpulse von Kugel und Kiste an. Die Kugel hat ein Gewicht von 8 g und bewegt sich vor dem Zusammenprall mit einer Geschwindigkeit von 350 m/s. Wählen wir die Kugel als Körper 1, dann gilt:
Der Impuls der Kugel beträgt vor dem Zusammentreffen 2,8 Ns. Die Kiste besitzt eine Masse von 2 kg und weist vor dem Zusammenprall keine Geschwindigkeit auf. Es gilt:
Die Kiste weist demnach einen Impuls von Null auf, da sie sich in Ruhe befindet.
Der Gesamtimpuls ist jetzt die Summe der Einzelimpulse:
Der Gesamtimpuls beträgt 2,8 Ns.
Impuls nach dem Zusammenstoß
Was passiert nach dem Zusammenstoß? Beide Körper (Kugel und Kiste) sind zu einem Körper verschmolzen, da die Kugel in der Kiste steckt. Dieser Körper muss den Impuls von 2,8 Ns aufweisen, da der Gesamtimpuls konstant bleibt. Die Masse des Körpers ist nichts anderes, als die Summe der beiden Massen (m = 2,008 kg). Die Geschwindigkeit, mit welcher sich dieser Körper bewegt soll berechnet werden:
Der Impuls ist der Gesamtimpuls vor dem Stoß mit 2,8 Ns, die Masse ist die Summe der Masse beider Körper:
Die Gleichung lösen wir nach der gesuchten Geschwindigkeit auf:
Die Kiste mit der Kugel weist nach dem Zusammenstoß eine Geschwindigkeit von 1,39 m/s auf. Dies entspricht einer Geschwindigkeit von 5 km/h (= 1,39 · 3,6).
Beispiel 2: Waggons
Ein Waggon mit einer Masse von 10 Tonnen fährt mit 10 km/h und stößt dabei auf einen zweiten Waggon mit der Masse von 15 Tonnen. Der zweite Waggon bewegt sich in die gleich Richtung, hat aber nur eine Geschwindigkeit von 4 km/h.
Mit welcher Geschwindigkeit fahren beide Waggons nach dem Zusammenprall weiter?
Diese Aufgabe ist fast identisch zur oberen Aufgabe. Dieses Mal weisen aber beide Körper (Waggons) eine Geschwindigkeit auf und fahren in dieselbe Richtung auf derselben Schiene. Da der hintere Waggon aber schneller ist, stößt er irgendwann gegen den vorderen Waggon. Wir starten damit den Gesamtimpuls der beiden Waggons vor dem Stoß zu bestimmen. Du musst vorher noch die Einheiten umrechnen:
Geschwindigkeiten
10 km/h = 10 : 3,6 = 2,78 m/s
4 km/h = 4 : 3,6 = 1,11 m/s
Massen
10 t = 10.000 kg
15 t = 15.000 kg
Als nächstes berechnen wir die Einzelimpulse der beiden Waggons:
Hinterer Waggon:
Vorderer Waggon:
Der Gesamtimpuls ist nichts anderes als die Summe der beiden Einzelimpulse:
Dieser Gesamtimpuls ist auch nach dem Stoß vorhanden. Wir wissen, dass beide Waggons sich gemeinsam bewegen, also eine Geschwindigkeit aufweisen. Du kannst also nach dem Stoß die beiden Körper als ein Körper betrachten, der die Masse der beiden Waggons aufweist:
Und damit gilt:
Wir lösen die Gleichung nach auf und erhalten:
Die beiden Waggons fahren mit einer Geschwindigkeit von 1,8 m/s gemeinsam weiter.
Schnellere Variante
Die schnellere Berechnungsvariante ergibt sich aus der obigen Formeln für den Impulserhaltungssatz:
Da sich beide Waggons nach dem Stoß mit einer Geschwindigkeit (nennen wir sie u) bewegen, gilt:
Wir können die Geschwindigkeit u auf der rechten Seite ausklammern und erhalten:
Danach teilen wir durch die Klammer, damit u alleine steht:
Jetzt können wir alle Werte eingeben und erhalten:
Wir erhalten natürlich dieselbe Geschwindigkeit nach dem Stoß.
In der nachfolgenden Lerneinheit schauen wir uns den Kraftstoß an.
Was gibt es noch bei uns?
Tausende interaktive Übungsaufgaben
Quizfrage 1
Quizfrage 2
“Wusstest du, dass unter jedem Kursabschnitt eine Vielzahl von verschiedenen interaktiven Übungsaufgaben bereitsteht, mit denen du deinen aktuellen Wissensstand überprüfen kannst?”

Das erwartet dich!
Unser Dozent Jan erklärt es dir in nur 2 Minuten!

Auszüge aus unserem Kursangebot!
Hat dir dieses Thema gefallen? – Ja? – Dann schaue dir auch gleich die anderen Themen zu den Kursen
WT3 (Werkstoffprüfung) und
TM1 (Technische Mechanik – Statik) an.


Perfekte Prüfungsvorbereitung für nur 14,90 EUR/Jahr pro Onlinekurs
++ Günstiger geht’s nicht!! ++
Oder direkt >> Mitglied << werden und >> Zugriff auf alle 26 Kurse << (inkl. >> Webinare << + Unterlagen) sichern ab 7,40 EUR/Monat
++ Besser geht’s nicht!! ++

Technikermathe.de meets Social-Media

Dein Technikermathe.de-Team