Mehr zu diesem Thema und der Statik findest du im Kurs: PH2-Statik
Wir behandeln in diesem Text wieder einen Körper auf der schiefen Ebene. Dieses mal greift aber eine zusätzlich Kraft an. Eine solche Kraft könnte die Kiste zum Beispiel die Ebene hinab oder die Ebene hinauf ziehen.
Betrachten wir hierzu ein Beispiel.

In dem obigen Beispiel greift eine zusätzliche Kraft an die Kiste an. Der Haftungskoeffizient betrage
. Der Winkel zwischen der Waagerechten und der schiefen Ebene beträgt
. Die Masse der Kiste betrage
.
Rutscht die Kiste ohne Kraft F?
Rutscht die Kiste mit Kraft F?
Schiefe Ebene mit zusätzlicher Kraft – Ohne zusätzliche Kraft

Infolge der Gewichtskraft der Kiste tritt die Hangabtriebskraft sowie die Normalkraft
auf. Die Reibungskraft
entsteht infolge der Reibung zwischen der Kiste und der schiefen Ebene und wirkt immer entgegengesetzt zur möglichen Bewegung.
Ob die Kiste rutscht oder nicht können wir ohne zusätzlichen Kraftangriff über den Haftungswinkel bestimmen. Das ist der Winkel, bei welchem die Kiste gerade noch auf der schiefen Ebene haftet. Ist der Haftungswinkel gegeben, so ist die Hangabtriebskraft
gleich der Reibungskraft
.
Wir berechnen den Haftungswinkel aus der folgenden Gleichung:
Ohne die zusätzliche Kraft F haftet die Kiste bis zu einem Neigungswinkel von 26,57° auf der schiefen Ebene. Ist der Neigungswinkel größer als 26,57°, so beginnt die Kiste zu rutschen. In diesem Beispiel haftet die Kiste, weil der gegebene Winkel von 18° kleiner als der Haftungswinkel ist.
Schiefe Ebene mit zusätzlicher Kraft

Die Kraft F zieht die Kiste nach unten. Demnach ist hier, neben der Hangabtriebskraft , eine zusätzliche Kraft gegeben, welche die Kiste die schiefe Ebene nach unten befördern möchte. Wir wollen nun herausfinden, ob sich die Kiste auch unter Berücksichtigung von der Kraft F im Gleichgewicht befindet, also nicht rutscht.
Wir können die Berechnung hier nicht über den Haftungswinkel durchführen, sondern müssen uns die Kräfte parallel zur schiefen Ebene anschauen. Dazu bilden wir die Summe der Kräfte, die parallel zur schiefen Ebene liegen. Wir wählen die Kräfte nach links unten (in Richtung der Bewegung) positiv und die Kräfte nach rechts oben negativ:
I.
Alle positiven Kräfte ( und
) führen dazu, dass sich die Kiste nach unten bewegt. Alle negativen Kräfte (
) dafür, dass die Kiste dem rutschen entgegenwirkt. Da keine Bewegung stattfinden soll, muss die Summe der Kräfte gleich Null ergeben.
Wir berechnen nun die Hangabtriebskraft und die Reibungskraft
.
Wir benötigen zunächst die Kraft :
Einsetzen in die Gleichung I:
I.
I.
Die Summe aller Kräfte ergibt eine negative Kraft. Wir haben festgelegt, dass die negativen Kräfte nach rechts oben zeigen. Das bedeutet also, dass die Reibungskraft größer ist, als die Hangabtriebskraft und die Kraft
zusammen. Demnach haftet die Kiste auf der schiefen Ebene und rutscht trotz zusätzlicher Kraft
nicht die schiefe Ebene herunter.
Greift eine zusätzliche Kraft in Richtung der Hangabtriebskraft an, so führt dies zu einer größeren resultierenden Kraft. Damit die Kiste jetzt nicht rutscht, muss die Reibungskraft größer sein, als die Summe aus der zusätzlichen Kraft
und der Hangabtriebskraft
:
Kiste haftet
Kiste rutscht
Wir wollen nun zwei Kräfte betrachten, die dazu führen sollen einen Körper auf der schiefen Ebene nach oben bzw. nach unten zu bewegen.
Schiefe Ebene mit zusätzlicher Kraft: Aufwärtskraft
Betrachten wir als erstes die Aufwärtskraft , die nötig ist, um die Kiste nach rechts oben zu bewegen.

Wir wollen die Größe der Kraft berechnen, die notwendig ist damit sich die Kiste nach oben bewegt. Die Bewegung wird jetzt also nach rechts oben angenommen. Da die Reibungskraft
immer entgegengesetzt zur Bewegung wirkt, müssen wir diese nun nach links unten einzeichnen.
Wir berechnen zunächst wieder den Grenzfall, also bis wann gerade noch Haftung besteht und die Kiste sich nicht bewegt. Dazu bilden wir wieder die Summe der Kräfte für alle zur schiefen Ebene parallelen Kräfte. In diesem Fall gehen wir aber davon aus, dass die Kiste sich nach oben bewegt. Deswegen wählen wir die Kräfte die nach rechts oben zeigen positiv und die Kräfte die nach links unten zeigen negativ (Kräfte in Richtung der möglichen Bewegung werden also positiv berücksichtigt):
I.
Auflösen nach der gesuchten Aufwärtskraft:
Da sich an der Aufgabenstellung nichts geändert hat, können wir die Hangabtriebskraft und die Reibungskraft
von oben übernehmen:
Greift eine Kraft bis 384,82 N an, so bewegt sich die Kiste nicht. Eine Kraft größer als 384,82 N hingegen führt dazu, dass sich die Kiste nach rechts oben bewegt.
Schiefe Ebene mit zusätzlicher Kraft: Abwärtskraft
Betrachten wir als nächstes die Abwärtskraft , die nötig ist, um die Kiste nach links unten zu bewegen. Das haben wir bereits im ersten Beispiel berechnet. Dieses mal haben wir die Abwärtskraft aber nicht vorgegeben, sondern sollen die Größe der Abwärtskraft berechnen, die notwendig ist, damit sich die Kiste nach unten bewegt. Dies ist dann der Fall, wenn Hangabtriebskraft
und Abwärtskraft
die Reibungskraft
überwinden.

Die Bewegung nehmen wir jetzt nach links unten an. Die Reibungskraft wirkt immer entgegengesetzt zur Bewegung, in diesem Fall also nach rechts oben.
Wir berechnen zunächst wieder den Grenzfall, also bis wann noch gerade Haftung besteht und die Kiste sich nicht nach links unten bewegt. Dazu bilden wir wieder die Summe der Kräfte, die parallel zur schiefen Ebene liegen. Da die Bewegung nun nach links unten angenommen wird, berücksichtigen wir alle Kräfte die nach links unten zeigen positiv:
I.
Auflösen nach der gesuchten Abwärtskraft ergibt dann:
Einsetzen von und
:
Greift eine Kraft bis 81,68 N an, so bewegt sich die Kiste nicht. Eine Kraft größer als 81,68 N hingegen führt dazu, dass sich die Kiste in Bewegung setzt (nach links unten).
Sollst du die Größe der Auftriebskraft bzw. Abtriebskraft berechnen, so kannst du die folgenden Gleichungen verwenden:
Nachdem wir jetzt die Schiefe Ebene mit zusätzlicher Kraft berechnet haben, betrachten wir im nächsten Kurstext eine weitere für dich relevante Kraft, die Federkraft.
Was gibt es noch bei uns?
Tausende interaktive Übungsaufgaben
Quizfrage 1
Quizfrage 2
“Wusstest du, dass unter jedem Kursabschnitt eine Vielzahl von verschiedenen interaktiven Übungsaufgaben bereitsteht, mit denen du deinen aktuellen Wissensstand überprüfen kannst?”

Das erwartet dich!
Unser Dozent Jan erklärt es dir in nur 2 Minuten!

Auszüge aus unserem Kursangebot!
Hat dir dieses Thema gefallen? – Ja? – Dann schaue dir auch gleich die anderen Themen zu den Kursen
WT3 (Werkstoffprüfung) und
TM1 (Technische Mechanik – Statik) an.


Perfekte Prüfungsvorbereitung für nur 14,90 EUR/Jahr pro Onlinekurs
++ Günstiger geht’s nicht!! ++
Oder direkt >> Mitglied << werden und >> Zugriff auf alle 26 Kurse << (inkl. >> Webinare << + Unterlagen) sichern ab 7,40 EUR/Monat
++ Besser geht’s nicht!! ++

Technikermathe.de meets Social-Media

Dein Technikermathe.de-Team