(ET5-14) Reihenschwingkreise [Grundlagen, Zeigerbilder, Funktionsweise, Formeln]

Zu unseren Spartarifen
Zu unseren Angeboten
Inhaltsverzeichnis:

Nachdem wir im vergangenen Kurstext die Schwingkreise allgemein thematisiert haben, vertiefen wir nun dein Wissen und erklären dir was es mit den Reihenschwingkreisen auf sich hat. Dabei handelt es sich um eine RLC-Reihenschaltung.

Für ein optimales Verständnis helfen dir in diesem Kursabschnitt drei ausführliche Videoclips und zwei anschauliche Rechenbeispiele zu dem Thema.

Mehr zu diesem Thema und der Elektrotechnik findest du im Kurs: ET6-Wechselstromtechnik 1

Die Vertiefung der Wechselstromtechnik findest du im Kurs: ET7-Wechselstromtechnik 2

 

Reihenschwingkreis – Grundlagen

 

Je nach Anordnung von Spule (Induktivität) oder Kondensator (Kapazität) in einem Netzwerk, sprechen wir entweder von einem Reihen– oder Parallel-Schwingkreise. Dabei unterscheiden wir ob die beiden Energiespeicher in Reihe oder parallel geschaltet sind. 

 

Habt ihr irgendwelche Gemeinsamkeiten?…

Gemein haben beide Schaltungen, dass mit dem Ohm’schen Widerstand drei Bauteile im Netzwerk vorhanden sind, von denen aber nur Spule und Kondensator als reaktive Komponenten angesehen werden. Man nennt so eine Schaltung – Schaltung zweiter Ordnung, denn sie werden durch Schwankungen der Netzfrequenz beeinflusst.

 

Kondensator und Spule haben einen gemeinsamen Frequenzpunkt, an welchem sie sich gegenseitig aufheben. Dies beeinflusst die Eigenschaften der Schaltung. Es handelt sich um den Resonanzfrequenzpunkt

 

Die Reihenschaltung von Ohm’schen Widerstand, Spule und Kondensator hat mit L und C zwei sich gegenseitig ergänzende Energiespeicher mit magnetischer (L) und elektrischer (C) Energie. 

 

Erinnerst du dich?…

In Schwingkreisen laden sich Spulen und Kondensatoren gegenseitig immer wieder auf. Dabei entlädt sich der eine um  den anderen aufzuladen und umgekehrt.

Dieser gegenseitige Ladungsvorgang und der damit verbundene Stromfluss setzt sich so lange fort, bis (zumindest bei der freien Schwingung, also ohne zusätzliche Energiezufuhr) die letzte Energie am Wirkwiderstand in Wärmeleistung an die Umgebung umgesetzt wurde. 

 

Strom und Spannung sind bei den beiden Blindwiderständen (X_L und X_C) um 90° gegeneinander Phasen verschoben. 

 

Wird der Reihenschwingkreis an einer Konstant-Spannungsquelle variabler Frequenz betrieben, kann der Amplituden- und Phasenfrequenzgang messtechnisch aufgenommen werden. Die Impedanz des Schwingkreises ist von der anliegenden Signalfrequenz abhängig und beeinflusst den Kreisstrom.

 

Reihenschwingkreise – Grafische Darstellung und Ermittlung

Jetzt folgt zuerst die Darstellung der RLC-Reihenschaltung in einem Schaltplan und anschließend die Vorgehensweise bei der Darstellung im Zeigerbild (Zeigerdiagramm)

 

Reihenschwingkreise – Darstellung im Schaltplan

In der nachfolgenden Abbildung findest du eine typische Darstellung einer in Reihe befindlichen Anordnung von Ohm’schen Widerstand, Spule und Kondensator als Schaltplan.

Der Netzstrom \underline{I} der alle Elemente durchfließt ist, wie für eine Reihenschaltung üblich, an allen Stellen im Netzwerk identisch (konstant). Anders verhält es sich mit den Spannungen. Diese variieren und sind deshalb einzeln aufgeführt mit \underline{U}, \underline{U}_R, \underline{U}_L, \underline{U}_C

Reihenschwingkreis - RLC-Reihenschaltung
Reihenschwingkreis – RLC-Reihenschaltung

 

Reihenschwingkreise – Darstellung im Zeigerbild

Wie gewohnt zeichnen wir zuerst den Stromzeiger auf der X-Achse liegen ein. Bei der Reihenschaltung hat dieser für alle Spannungen den gleichen Bezug.

Reihenschwingkreise
Zeigerbild – Stromzeiger

 

Der Spannungszeiger des Ohm’schen Widerstandes \underline{U}_R liegt in der gleichen Phase wie der Stromzeiger und wird deshalb auf diesem abgelegt.

Zeigerbild - Spannungszeiger
Zeigerbild – Spannungszeiger

 

Der Spannungszeiger der Spule (Induktivität) \underline{U}_L wird vertikal, also im 90 ° Winkel zum Stromzeiger und Spannungszeiger eingezeichnet. Dabei legen wir dessen Ende an die Spitze des Spannungszeigers von \underline{U}_R.

Zeigerbild - Spannungszeiger
Zeigerbild – Spannungszeiger

 

Der Spannungszeiger des Kondensators (Kapazität) \underline{U}_C wird in die entgegengesetzte Richtung zum Spannungszeiger von \underline{U}_L und vertikal, also im -90° Winkel zum Spannungszeiger von eingezeichnet \underline{U}_R. Dessen Ende an der Spitze des Spannungszeigers von \underline{U}_L liegt. 

Zeigerbild - Spannungszeiger
Zeigerbild – Spannungszeiger

 

Der Spannungszeiger der Netzspannung \underline{U} stellt die Strecke zwischen dem Ende des Spannungszeigers \underline{U}_R (Koordinatenursprung) und der Spitze von \underline{U}_C dar und kann jetzt final eingezeichnet werden. 

Zeigerbild - Spannungszeiger
Zeigerbild – Spannungszeiger

 

Den Phasenverschiebungswinkel \varphi zeichnen wir dann im letzten Schritt ein.

Zeigerbild - Phasenverschiebungswinkel
Zeigerbild – Phasenverschiebungswinkel

 

Es zeigt sich ganz eindeutig, dass dieser einen positiven Wert annimmt. 

 

Reihenschwingkreise – Berechnung

Wie du bereits weißt muss der Netzstrom nicht für die einzelnen Bauteile im Netzwerk errechnet werden, da er überall konstant ist. Die Spannung, der Phasenverschiebungswinkel und die Resonanz sind jedoch Größen, die ausgerechnet werden müssen.

 

Reihenschwingkreise – Berechnung der Netzspannung und Teilspannungen

Nachfolgend findest du die Gleichungen mit denen die Spannungen allgemein und unter Anwendung des Spannungsdreiecks [Satz des Pythagoras] berechnet werden können. 

 

Netzspannung allgemein

Die Gleichung für die Netzspannung können wir wie gewohnt nach der Rechenregel für Reihenschaltungen ermitteln.

 

Getreu dem Motto “in Summe ist alles 0” und “was reingeht muss auch rauskommen”Freie Formulierung des Knotensatzes.

\underline{U} = \underline{U}_R + \underline{U}_L + \underline{U}_C

 

Jetzt fehlen uns aber noch die Werte für die einzelnen Spannungen (Teilspannungen) am Widerstand, an der Spule und am Kondensator.

Wir rechnen hier mit den Effektivwerten weiter!

 

Teilspannung am Ohm’schen Widerstand

U_R = I \cdot R

 

Teilspannung an der Spule (Induktivität)

U_L = I \cdot \omega \cdot L

 

Teilspannung am Kondensator (Kapazität)

U_C = I  \cdot \frac{1}{\omega \cdot C}

 

Netzspannung aus Spannungsdreieck

In der Vergangenheit konnten wir immer direkt mit der Anwendung des Satz des Pythagoras bei Spannungsdreiecken starten.

Dies geht hier aufgrund der Strecke von \underline{U}_C hier nicht mehr ohne weiteres.

 

Um dem Problem Herr zu werden, subtrahieren wir \underline{U}_C mit U_C (Effektivwert) aus der Gleichung. Das hat den Vorteil, dass auch die zu lang geratene Strecke \underline{U}_L korrekt verkürzt wird und wir den Satz des Pythagoras anwenden können.

Reihenschwingkreis - Satz des Pythagoras
Reihenschwingkreise – Satz des Pythagoras

 

Es gilt also:

U = \sqrt{ U_R^2 + (U_L - U_C)^2}

 

Wenn wir uns jedoch die Netzspannung mit den Werten aus den Spannungsgleichungen ermitteln möchten, dann sieht das wie folgt aus:

U = I \cdot \sqrt{R^2 + (\omega \cdot L - \frac{1}{\omega \cdot C})^2}

 

Reihenschwingkreise – Berechnung des Phasenverschiebungswinkels

Den Phasenverschiebungswinkel können wir ganz einfach aus dem Zeigerdiagramm (Rechtwinkligen Spannungsdreieck) ermitteln. 

tan \varphi = \frac{U_L - U_C}{U_R}

 

oder mit den Werten aus den Spannungsgleichungen

tan \varphi = \frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R} 

 

Reihenschwingkreise – Berechnung der Resonanz

Aus unseren bisherigen Gleichungen für die Spannungen und den Phasenverschiebungswinkel können wir ableiten, dass der Netzstrom I bei der gegebenen Netzspannung U und einem vorliegenden Widerstand R infolge der Reihenresonanz maximal wird. 

I_{max} = \frac{U}{R} – Thomsonsche Formel für Reihenschwingkreise | Maximalwert

Dies setzt jedoch voraus, dass U_L und U_C identisch sind und sich damit in der Berechnung gegenseitig aufheben:

\omega \cdot L - \frac{1}{\omega \cdot C} = 0 

 

Merk’s dir!

Bei einem mit L und C gleich dimensionierten Reihen- und Parallelschwingkreis hat dieselbe Resonanzfrequenz. Das bedeutet, dass die Thomsonsche Schwingungsformel zur Berechnung unverändert für beide bleibt.

 

Darstellung der Reihenresonanz (Resonanz) im Zeigerbild

Zum Abschluss dieser Lerneinheit stellen wir noch eben schnell das Zeigerbild für die Reihenresonanz, besser gesagt von dessen Wirkung. 

 

Resonanz (Reihenresonanz)
Resonanz (Reihenresonanz)

 

Wie in der Letzten Gleichung schon ersichtlich, heben sich die beiden Teilspannung \underline{U}_L und \underline{U}_C gegenseitig auf. Dies untermalt die oben getätigte Aussage zum Resonanzfrequenzpunkt.

 

Daraus leiten wir folgenden Zusammenhänge im Zeigerdiagramm ab:

\underline{U}_L = - \underline{U}_C

das bedeutet

\underline{U} = \underline{U}_R 

 

Bei den Effektivwerten haben wir folgenden Zusammenhang:

U_L = U_C 

das bedeutet

U = U_R

 

Was kommt als Nächstes?

Nachdem du jetzt weißt wie Reihenschwingkreise funktionieren und wie die Größen hierzu ermittelt werden, stellen wir dir im nachfolgenden Kurstext den Parallelschwingkreis vor.

Was gibt es noch bei uns?

Optimaler Lernerfolg durch tausende Übungsaufgaben

 

Übungsbereich (Demo) - Lerne mit mehr als 4000 Übungsaufgaben für deine Prüfungen
Übungsbereich (Demo) – Lerne mit mehr als 4000 Übungsaufgaben für deine Prüfungen

 

Quizfrage 1

 

Quizfrage 2

 

“Wusstest du, dass unter jedem Kursabschnitt eine Vielzahl von verschiedenen interaktiven Übungsaufgaben bereitsteht, mit denen du deinen aktuellen Wissensstand überprüfen kannst?”  

Alle Technikerschulen im Überblick

Zum Verzeichnis der Technikerschulen (Alles Rund um die Schulen)
Zum Verzeichnis der Technikerschulen

 

Kennst du eigentlich schon unser großes Technikerschulen-Verzeichnis für alle Bundesländer mit allen wichtigen Informationen (Studiengänge, Kosten, Anschrift, Routenplaner, Social-Media) ? Nein? – Dann schau einfach mal hinein:   

 

Was ist Technikermathe?

Unser Dozent Jan erklärt es dir in nur 2 Minuten!

Oder direkt den > kostenlosen Probekurs < durchstöbern? – Hier findest du Auszüge aus jedem unserer Kurse!

Geballtes Wissen in derzeit 26 Kursen

Hat dir dieses Thema gefallen?Ja? – Dann schaue dir auch gleich die anderen Themen zu den Kursen 

WT3 (Werkstoffprüfung) und
TM1 (Technische Mechanik – Statik) an. 

Lerne nun erfolgreich mit unserem Onlinekurs Technische Mechanik 1
TM1 (Technische Mechanik)
Lerne nun erfolgreich mit unserem Onlinekurs Werkstofftechnik 3
WT3 (Werkstoffprüfung)

 

Perfekte Prüfungsvorbereitung für nur 14,90 EUR/Jahr pro Kurs

++ Günstiger geht’s nicht!! ++

 

 

Oder direkt Mitglied werden und Zugriff auf alle 26 Kurse  (inkl.  Webinare  + Unterlagen) sichern ab 7,40 EUR/Monat  ++ Besser geht’s nicht!! ++  

 

Social Media? - Sind wir dabei!

Kennst du eigentlich schon unseren YouTube-Channel? – Nein? – Dann schau super gerne vorbei:

Technikermathe auf Youtube 

Mehr Videos zu allen Themen des Ingenieurwesens auf Youtube

  Immer auf dem neuesten Stand sein? – Ja? – Dann besuche uns doch auch auf

Technikermathe auf Instagram 

Sei immer auf dem neuesten Stand und besuche uns auf Instagram

Technikermathe auf Facebook

Sei immer auf dem neuesten Stand und besuche uns auf Facebook

Dein Technikermathe.de-Team

Zu unseren Spartarifen
Zu unseren Spartarifen