(ET5-06) Zeiger bei Wechselstrom [t-U-Diagramm, t-I-Diagramm]

Zu unseren Spartarifen
Zu unseren Angeboten
Inhaltsverzeichnis:

In diesem Kurstext vermitteln wir dir ein Grundverständnis für das Zeigerdiagramm, Zeiger und Zeigerbilder bei Wechselspannung und Wechselstrom. Auch das t-I-Diagramm und das t-U-Diagramm lernst du im Zusammenhang mit Stromzeigern und Spannungszeigern kennen. 

Für ein optimales Verständnis helfen dir in diesem Kursabschnitt drei ausführliche Videoclips und zwei anschauliche Rechenbeispiele zu dem Thema.

Mehr zu diesem Thema und der Elektrotechnik findest du im Kurs: ET6-Wechselstromtechnik 1

Die Vertiefung der Wechselstromtechnik findest du im Kurs: ET7-Wechselstromtechnik 2

 

Merk’s dir!

Das T-U-Diagramm, auch als “Phasendiagramm” bekannt, ist ein grafisches Werkzeug, das in der Wechselstromtechnik verwendet wird, um die Beziehung zwischen Spannung (U) und Zeit (T) darzustellen. Es wird oft verwendet, um die Phasenverschiebung zwischen Spannung und Strom in einem Wechselstromkreis zu visualisieren.

In einem T-U-Diagramm werden die Zeit auf der horizontalen Achse (T-Achse) und die Spannung auf der vertikalen Achse (U-Achse) dargestellt. Durch die grafische Darstellung des zeitlichen Verlaufs der Spannung können Phasenverschiebungen zwischen Spannung und Strom leicht erkannt werden.

Zeigerdiagramm T-U-Diagramm
Zeigerdiagramm T-U-Diagramm

 

Dieses Diagramm ist besonders nützlich, um Phasenverschiebungen in induktiven und kapazitiven Schaltkreisen zu analysieren. Zum Beispiel wird in einem rein induktiven Schaltkreis die Stromwelle im Vergleich zur Spannungswelle um 90 Grad verzögert, während sie in einem rein kapazitiven Schaltkreis um 90 Grad vorausgeht.

Das T-U-Diagramm ist ein wertvolles Instrument für Ingenieure und Techniker, um das Verhalten von Wechselstromschaltkreisen zu verstehen und zu analysieren.

 

Zeigerdiagramm – Grundlagen

Du kennst ja bereits das Prinzip aus der Gleichstromtechnik aber das Vollständigkeit halber hier noch mal angepasst für die Wechselstromtechnik:

Kannst du dich noch erinnern?

Liegt an einem Ohmschen Leiter eine sinusförmige Wechselspannung an, so fließt durch den Widerstand ein elektrischer Strom, dessen Intensität von der Höhe der angelegten Spannung und dem Widerstandswert des Widerstandes abhängig ist. 

 

Sowohl der elektrische Strom, als auch die elektrische Spannung erreichen ihren Nulldurchgang, ihren maximalen Scheitelwert und ihren minimalen Scheitelwert gleichzeitig. 

 

Merk’s dir!

Da es sich um einen Ohmschen Leiter handelt, ist die Phasenverschiebung zwischen Strom und Spannung gleich Null. 

 

Um sich ein anschaulichen Überblick zum zeitlichen Verlauf von Spannung und Strom zu verschaffen, empfiehlt es sich die einzelnen Werte im Zeitverlauf in ein t-U-Diagramm sowie ein t-I-Diagramm zu überführen. 

 

Die Wechselstromtechnik nutzt darüber hinaus die Zeigerdiagramme, welche besonders leicht zu erstellen sind.

 

Es kann ein zeichnerischer Zusammenhang zwischen dem Zeigerdiagramm und dem jeweiligen t-U-Diagramm sowie t-I-Diagramm hergestellt werden. 

 

Merk’s dir!

Um einen Wert im t-U-Diagramm oder t-I-Diagramm auf ein Zeigerdiagramm zu übertragen, legt man das Zeigerdiagramm mit den gleichen Maßen zum Kurvenverlauf des t-U- oder t-I-Diagramm zeichnerisch direkt neben die Diagramme. 

 

Wenn man nun die Kurve abfährt, kann man für jeden Zeitpunkt durch eine horizontale Verschiebung des zugehörigen Punktes auf der Kurve bis hin zum Zeigerdiagramm eine passende Spannung \hat{U} abbilden, wobei dessen Zeigerspitze immer deckungsgleich mit dem verschobenen Punkt ist.

 

Wenn dir das eventuell noch zu kompliziert ist, dann schaue dir einfach die nachfolgenden 6 Bilder an. Hier sind unterschiedliche Punkte verschoben worden.

 

Zeigerdiagramm – t-U-Diagramm

Um die Sinusförmige Wechselspannung für einen beliebigen Wert im t-U-Diagramm darstellen zu können, lässt man den Zeiger mit der Länge der Spannungsamplitude \hat{u} mit einer zugehörigen Winkelgeschwindigkeit \omega gegen den Uhrzeigersinn rotieren. Auf der Ordinate lässt sich dann immer der jeweilige Augenblickwert der Wechselspannung ablesen. 

 

Dieser Vorgang ist für drei Punkte auf der Kurve im t-U-Diagramm dargestellt.

Zeigerdiagramm - t-U-Diagramm - Spannungszeiger
Zeigerdiagramm – t-U-Diagramm – Spannungszeiger
Zeigerdiagramm - t-U-Diagramm - Spannungszeiger
Zeigerdiagramm – t-U-Diagramm – Spannungszeiger
Zeigerdiagramm - t-U-Diagramm - Spannungszeiger
Zeigerdiagramm – t-U-Diagramm – Spannungszeiger

 

Zeigerdiagramm – t-I-Diagramm

Auch der sinusförmige Wechselstrom kann für einen beliebigen Wert im t-I-Diagramm dargestellt werden.  Wieder lässt man den Zeiger jetzt mit der Länge der Wechselstromamplitude \hat{i} und der zugehörigen Winkelgeschwindigkeit \omega gegen den Uhrzeigersinn rotieren. Auf der Ordinate lässt sich dann immer der jeweilige Augenblickwert des Wechselstroms ablesen. 

Wieder stellen wir den Vorgang für drei Punkte auf der Kurve im t-I-Diagramm dar. 

Zeiger - t-I-Diagramm - Stromzeiger
Zeiger – t-I-Diagramm – Stromzeiger
Zeiger - t-I-Diagramm - Stromzeiger
Zeiger – t-I-Diagramm – Stromzeiger
Zeiger - t-I-Diagramm - Stromzeiger
Zeiger – t-I-Diagramm – Stromzeiger

 

Zeigerdiagramm – t-U-Diagramm – Summenspannung bilden

Ein besonderer Vorteil von Zeigerdiagrammen besteht darin, dass es uns erlaubt phasenverschobene, gleichfrequente Spannungen mit unterschiedlichen Amplituden zu addieren. 

 

 

Summenspannung im t-U-Diagramm

In dem t-U-Diagramm siehst du zwei Spannungen U_1(t) und U_2(t). Beide Sinuskurven bilden zusammen durch einfach Addition eine dritte Sinuskurve, die Summenspannung U_{12}(t). Diese Darstellung soll auch stellvertretend für den Summenstrom im t-I-Diagramm erfolgen

 

t-U-Diagramm - Summenspannung
t-U-Diagramm – Summenspannung

 

Summenspannung im Zeigerdiagramm

Mit Hilfe des Zeigerdiagramms lässt sich die Summenspannung wesentlich schneller durchführen als mit der Addition der Sinuskurven. Denn alle drei Spannungen weisen die gleiche Frequenz auf, womit ihre Zeiger mit der gleichen Winkelgeschwindigkeit rotieren. 

 

 

Zeigerdiagramm – Zusammensetzung der Zeiger

Ähnlich wie in der Mechanik, wo Kräfte addiert werden, bildet sich der Summenzeiger durch eine vektorielle Addition aus den Zeigern der Teilspannungen. 

 

Im vorherigen Kurstext haben wir den Knotensatz und den Maschensatz für Wechselströme und Wechselspannungen behandelt. Dieses Wissen greifen wir nun auf.

  1. In der Wechselstromtechnik besagt der Knotensatz, dass die Augenblickwerte der Wechselströme zusammengefasst werden müssen.
  2. In der Wechselstromtechnik besagt der Maschensatz, dass die Augenblickwerte der Wechselspannungen zusammengefasst werden müssen. 

 

Spannungszeiger – Vorgehensweise

Da wir ja bereits erkannt haben, dass die Ermittlung von Summenspannungen mit dem Zeigerdiagrammen viel einfacher von der Hand geht, befassen wir uns in diesem Kurstext nur noch mit Zeigern. 

 

Spannungszeiger  – Rotierende Spannungszeiger

Stellen wir uns einen Schaltplan mit einer Wechselstromschaltung vor, genauer gesagt einen Ausschnitt davon. Hier liegen zwei Widerstand in Reihenschaltung vor.

 

Reihenschaltung, Wechselspannungen
Reihenschaltung, Wechselspannungen

 

Die anliegenden Wechselspannungen sind sinusförmige mit einer gleichen Frequenz und Effektivwerten

Die Effektivwerte U_1 und U_2 werden mit Hilfe von Zählpfeilen u_1 und u_2 dargestellt. 

Spannungszeiger - Rotation
Spannungszeiger – Rotation

 

Der Abbildung kannst du entnehmen, dass die rotierenden Spannungszeiger um den Winkel \varphi_{12} gegeneinander versetzt sind. Die Winkelgeschwindigkeit \omega ist bei beiden konstant. 

 

Spannungszeiger – Projektion 

Ausgehend vom Maschensatz ist es uns jetzt möglich den Effektivwert von U_{12} sowie den Winkel der \varphi_{1u} der Wechselspannung u_1 zu bestimmen. 

 

Du erinnerst dich? – Die Maschenregel besagt bei Wechselspannungen

u = u_1 + u_2

 

Für die beiden Zeiger \sqrt{2} U_1 und \sqrt{2} U_2 haben wir die Augenblickwerte u_1 und u_2 zu einem beliebigen Zeitpunkt gegeben. Jetzt können wir, wie in der nächsten Abbildung dargestellt, die jeweiligen Zeiger mit Hilfe einer Parallelverschiebung mit deren Ende an die Spitze des jeweils anderen Zeigers legen. 

Spannungszeiger, Zusammensetzung
Spannungszeiger, Zusammensetzung

 

Wenn richtig gezeichnet wurde verläuft die Summenspannung U_{12} vom Ursprung bis zur Spitze der beiden parallelverschobenen Zeiger. Damit haben wir den resultierenden Spannungszeiger bestimmt, den wir als neuen Effektivwert ablesen können. Gleiches gilt für die neu entstandenen Winkel \varphi_{1u} und \varphi_{u2}, die wir ebenfalls ablesen können. 

 

Aufgepasst!

In der Literatur findest du häufig in Bezug auf die Spannungszeiger folgende Gleichung:
 
U_{12}} = \underline{U_1} + \underline{U_2}
 
Da die Spannungszeiger analog zur Kräftebestimmung in der Technische Mechanik in Hinblick auf Betrag und Richtung richtig berücksichtigt werden müssen, nutzt man in Schaltplänen anstelle der Angabe der Zählpfeile u_{1} und u_{2} die Zeiger \underline{U_1} und  \underline{U_2}

 

Spannungszeiger – Berechnung des Effektivwerts und Winkels

Da wir nun alle Größen zeichnerisch ermittelt haben, machen wir uns jetzt ans Werk und stellen Gleichungen zur Berechnung des Effektivwerts und des Winkels auf:

 

Effektivwert:U = \sqrt{U_1^2 + U_2^2 + 2 \cdot U_1 \cdot U_2 \cdot cos \varphi_{12}}

Winkel: cos\varphi_{1u} = \frac{U_{12}^2 \cdot U_1^2 U_2^3}{2 \cdot U_{12} \cdot U_1}

 

Stromzeiger – Vorgehensweise

Da wir ja bereits erkannt haben, dass die Ermittlung von Summenströmen mit dem Zeigerdiagrammen viel einfacher von der Hand geht, befassen wir uns auch hier nur noch mit Zeigern. 

 

Stromzeiger – Rotierende Stromzeiger

Stellen wir uns einen Schaltplan mit einer Wechselstromschaltung vor, genauer gesagt einen Ausschnitt davon. Hier liegen zwei Widerstand als Parallelschaltung vor.

Reihenschaltung - zwei Ströme
Reihenschaltung – zwei Ströme

 

Die anliegenden Wechselströme sind sinusförmige mit einer gleichen Frequenz und Effektivwerten. 

Die Effektivwerte I_1 und I_2 werden mit Hilfe von Zählpfeilen i_1 und i_2 dargestellt. 

Stromzeiger - Rotation
Stromzeiger – Rotation

 

Der Abbildung kannst du entnehmen, dass die rotierenden Stromzeiger um den Winkel \varphi_{12} gegeneinander versetzt sind. Die Winkelgeschwindigkeit \omega ist bei beiden konstant. 

 

Stromzeiger – Projektion 

Ausgehend vom Knotensatz ist es uns jetzt möglich den Effektivwert von I_{12} sowie den Winkel der \varphi_{1i} des Wechselstroms i_1 zu bestimmen. 

 Du erinnerst dich? –

Der Knotensatz besagt bei Wechselströmen

i = i_1 + i_2

 

Für die beiden Zeiger \sqrt{2} I_1 und \sqrt{2} I_2 haben wir die Augenblickwerte i_1 und i_2 zu einem beliebigen Zeitpunkt gegeben. Jetzt können wir, wie in der nächsten Abbildung dargestellt, die jeweiligen Zeiger mit Hilfe einer Parallelverschiebung mit deren Ende an die Spitze des jeweils anderen Zeigers legen. 

Stromzeiger - Zusammensetzung
Stromzeiger – Zusammensetzung

 

Wenn richtig gezeichnet wurde verläuft der Summenstrom I_{12} vom Ursprung bis zur Spitze der beiden parallelverschobenen Zeiger. Damit haben wir den resultierenden Stromzeiger bestimmt, den wir als neuen Effektivwert ablesen können. Gleiches gilt für die neu entstandenen Winkel \varphi_{1i} sowie \varphi_{i2}, auch diese können wir genau ablesen. 

 

Aufgepasst!

In der Literatur findest du häufig in Bezug auf die Stromzeiger folgende Gleichung:

\underline{I_{12}} = \underline{I_1} + \underline{I_2}


 
Da die Stromzeiger analog zur Kräftebestimmung in der Technische Mechanik in Hinblick auf Betrag und Richtung richtig berücksichtigt werden müssen, nutzt man in Schaltplänen anstelle der Angabe der Zählpfeile i_{1} und i_{2} die Zeiger \underline{I_1} und  \underline{I_2} [/intense_content_box]

 

Stromzeiger – Berechnung des Effektivwerts und Winkels

Da wir nun alle Größen zeichnerisch ermittelt haben, machen wir uns jetzt ans Werk und stellen Gleichungen zur Berechnung des Effektivwerts und des Winkels auf:

 

Effektivwert: I = \sqrt{I_1^2 + I_2^2 + 2 \cdot I_1 \cdot I_2 \cdot cos \varphi_{12}}

Winkel: cos\varphi_{1i} = \frac{I_{12}^2 \cdot I_1^2 I_2^3}{2 \cdot I_{12} \cdot I_1}

 

Was kommt als Nächstes?

Nachdem wir jetzt das Thema Zeigerbilder behandelt haben und du ein Gefühl dafür bekommst hast wie die erwähnten Strom– und Spannungszeiger erstellt und genutzt werden, möchten wir in der kommenden Lerneinheit noch mal intensiv auf sinusförmige Spannung und Ströme eingehen. Damit schaffen wir dann die Grundvoraussetzung für die kommenden Berechnungen zu Wechselstromkreisen. 

Was gibt es noch bei uns?

Optimaler Lernerfolg durch tausende Übungsaufgaben

 

Übungsbereich (Demo) - Lerne mit mehr als 4000 Übungsaufgaben für deine Prüfungen
Übungsbereich (Demo) – Lerne mit mehr als 4000 Übungsaufgaben für deine Prüfungen

 

Quizfrage 1

 

Quizfrage 2

 

“Wusstest du, dass unter jedem Kursabschnitt eine Vielzahl von verschiedenen interaktiven Übungsaufgaben bereitsteht, mit denen du deinen aktuellen Wissensstand überprüfen kannst?”  

Alle Technikerschulen im Überblick

Zum Verzeichnis der Technikerschulen (Alles Rund um die Schulen)
Zum Verzeichnis der Technikerschulen

 

Kennst du eigentlich schon unser großes Technikerschulen-Verzeichnis für alle Bundesländer mit allen wichtigen Informationen (Studiengänge, Kosten, Anschrift, Routenplaner, Social-Media) ? Nein? – Dann schau einfach mal hinein:   

 

Was ist Technikermathe?

Unser Dozent Jan erklärt es dir in nur 2 Minuten!

Oder direkt den > kostenlosen Probekurs < durchstöbern? – Hier findest du Auszüge aus jedem unserer Kurse!

Geballtes Wissen in derzeit 26 Kursen

Hat dir dieses Thema gefallen?Ja? – Dann schaue dir auch gleich die anderen Themen zu den Kursen 

WT3 (Werkstoffprüfung) und
TM1 (Technische Mechanik – Statik) an. 

Lerne nun erfolgreich mit unserem Onlinekurs Technische Mechanik 1
TM1 (Technische Mechanik)
Lerne nun erfolgreich mit unserem Onlinekurs Werkstofftechnik 3
WT3 (Werkstoffprüfung)

 

Perfekte Prüfungsvorbereitung für nur 14,90 EUR/Jahr pro Kurs

++ Günstiger geht’s nicht!! ++

 

 

Oder direkt Mitglied werden und Zugriff auf alle 26 Kurse  (inkl.  Webinare  + Unterlagen) sichern ab 7,40 EUR/Monat  ++ Besser geht’s nicht!! ++  

 

Social Media? - Sind wir dabei!

Kennst du eigentlich schon unseren YouTube-Channel? – Nein? – Dann schau super gerne vorbei:

Technikermathe auf Youtube 

Mehr Videos zu allen Themen des Ingenieurwesens auf Youtube

  Immer auf dem neuesten Stand sein? – Ja? – Dann besuche uns doch auch auf

Technikermathe auf Instagram 

Sei immer auf dem neuesten Stand und besuche uns auf Instagram

Technikermathe auf Facebook

Sei immer auf dem neuesten Stand und besuche uns auf Facebook

Dein Technikermathe.de-Team

Zu unseren Kursen
Zu unseren Kursen